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Abstract— Sets of multi-agent teams often need to maximize a with the global utility. We will show that team sizes can be
global utility rating the performance of the entire system where adjusted to make the optimal tradeoff.
a team cannot fully observe other teams’ agents. Such limited The concept of teams can be found most often in human
observability hinders team-members trying to pursue their team S ) .
utilities to take actions that also help maximize the global utility. activities. For example, corporations are often setup with team
In this article, we show how team utilities can be used in partially Structures where employees are members of a team or group
observable systems. Furthermore, we show how team sizes can(e.g., through sharing a bonus for successful completition of
be manipulated to provide the best compromise between having a project) and each team member benefits when the team
easy to learn team utilities and having them aligned with the g,ccessfully contributes to the goals of the corporation. Spon-

global utility. The results show that optimally sized teams in a t ¢ f tion i ts h Iso b tudied at
partially observable environments outperform one team in a fully aneous team formation In agents has also been studied at a

observable environment, by up to 30%. theoretical level. Axtell [2] has shown that for small sizes
of teams there can be a stable Nash equilibrium, but that
I. INTRODUCTION the stability breaks down when teams go beyond a certain

Team formation is important in many multi-agent system§ize. Similarly we will show that even when team formation
since it allows team members to focus on a team-goal, whitthcreated in a top-down manner that it may be difficult for
is simpler than a global-goal over an entire system[4], [9figents to learn to maximize team utilities for larger teams.
In addition team formation allows sharing of information [6], There has been extensive research on rule-based agent
[12] This paper focuses on systems using teams of |earnmm formations. Tambe haS ShOWn.that .Coord|.nat|0n. .rules
agents with the following properties: can be used successfully in many fields including military
engagement [14]. A common mechanism to coordinate team
. agents receive the utility of the team; and agents is for teams to have “joint intentions” [4] V\_/here team

« team members share observations about other teams.296NtS need to work for a common goal. Groz coins the term
In thi h o _l.“SharedPIan” [9] to refer to this concept. Also related to this
n t.|s system eac agef“ attempts.to maximize a util aper is work done in the field of sensor fusion. Fox has shown
provided by the team using a learning algorithm such

. , ; at when the amount of information that a robot receives
reinforcement learning or evolution over neu _ral networks. F%r restricted teams of robots with different sensors, can work
Sr:] C? ﬁ system to w_ork. properly, team utilities have to haYSgether to solve the robot localization problem [6]. In addition
the following properties: it has been shown that teams can share sensor information

« team utilities should be easy for the agents to optimizey estimate unobservable parts of the world in robotic soccer
« agents optimizing their team utilities should result ijjomains [12].

« an agent belongs to one and only one team;

agents optimizing the global utility; and The first step in creating a collection of teams that can
- teams must compute utilities when they cannot fullgffectively maximize the global utility is to ensure that teams
observe each other. can work together. If the teams are not designed to work

In this paper we address the first property by using the theasgll with each other, they may not learn their task properly,
of collectives [20], [15] to create learnable team utilities. Wenay interfere with each other’s ability to contribute to the
address the second and third property by modifying the theagpbal utility, or simply perform useless repetitive work. Hand
of collectives for partially observable environments to creatailoring the team utility functions may offer an alternative,
team utilities that are “aligned” with the global utility. Webut such systems: (i) have to be laboriously modeled; (ii)
will show that these properties are traded off as the team si@®vide “brittle” global performance; (iii) are not “adaptive” to
grows. The team utility for a small team is relatively easy tohanging environments; and (iv) generally do not scale well.
learn. However a large team is able to observe the actions oflo sidestep these problems, yet address the design require-
other teams better, allowing its team utility to be more alignedents listed above (i.e., “alignedness” and “learnability”) one



can use the framework of collectives [17], [20]. Given thisvill cause the multi-agent system to produce high values of
framework, the crucial design problem becomes: Assumirdg(z).

the individual agents are able to maximize the team utility

function (e.g., through reinforcement learning [13] or evolutio

of neural networks), what set of team utilities, when pursue f f
by those agents, result in high global utility?

There are two quantifiable properties (discussed in det G G
in Section 1) that help answer this question. First, the utilit
functions for the team need to be “aligned” with the globe p
utility, in that an action taken by an agent that improves i g

- / f
team utility also improves the global utility. Second, the utility g g g f g
functions need to be “learnable” in that an agent has to p O O O

able to discern the effect of its actions on its team utility ar x e o
select actions that optimize that utility. As we will highlight g O 78 o

below, the theory of collectives provides utilities for agentO g O g

that maximize the second property while satisfying the fir. O O

one.

The collectives framework has been successfully applied

; ; ; ; ; ig. 1. Team vs. Agent Utilities. Left figure shows agents following agent
to mUItlple domains |nclud|ng paCkEt routing over a datliilities that are not fully aligned with the global utility due to partial

network [21], the congestion game known as Arthur’s El Farghservanility. Right figure shows teams collecting observations from multiple
Bar problem [22], and the coordination of multi-rovers iragents allowing them to make team utilities that are more aligned.

learning sequences of actions [16]. In particular, in the routing

domain, the collectives approach achieved performance im—Note that in many systems, an individual teamvill only
provements of a factor of three over the conventional Short?ﬁﬁuence some of the components of We will use the
Path Algorithm (SPA) routing algorithms currently runningﬁota’[ion 2, to refer to the parts of that are dependent on

on_the internet [19], and avoided the Braess’ routing parad% actions of team. The vectorz, is the same size asand
Wr:'Ch rf)laguesk tZe Sl?ﬁ-kéasid systems [17]. fllv ob is equal toz except that all the components that do not depend
n the work described above, agents can fully obseryg oon are set to zero. By subtracting from z we produce

eﬁCh ?r:hte: and did T)Ot f?rrmt_ tea_ms. 'T‘ this p?per_txve V\; e vectorz_, = z — z,, a vector that is determined by the
show hat teams can be ellective In environments with partighions of all the agents other thanNote that this subscripted
observability, if the proper team utilities are used. In Section Wector notation is not the same as a traditional index to a vector

we provide some background on the theory of coIIectiv%?nceZ, > andz, all have the same number of components.
that is needed for this article. In Section Ill, we describe the There are two properties that are crucial to producing

prpblem domain and_ present the coIIect|ve-l_)ased _solutlons stems in which agents acting to optimize their team utilities
this problem. In Section 1V, we present the simulation resul

) ) . . il also optimize the provided global utility. The first of these
for domains where there is no costs associated with te b P g Y

L . . UWhcerns “aligning” the team utilities with the global utility.
members sharing informations and domains where there '%&mally a system iactored when for each team:
cost of sharing information. ' '

g-(2) = 97(2/) & G(2) > G(zl)

Il. BACKGROUND: COLLECTIVE INTELLIGENCE | , ,
V2,2 st. z—2; =2 — 2z,

In this work, we focus on a system of multi-agent teams
that aim to maximize a global utility function7(z), which Intuitively, for all pairs of states and 2’ that differ only for
is a function of the joint move of all agents in the system, team 7, a change inr's state that increases its team utility
In previous work [20] that uses the theory of collectives, eadannot decrease the global utility. As a trivial example, any
agent does not maximizé(z) directly, but instead maximizes system in which all the team utility functions equé! is
an agent specific utility functiory(z). Instead in this work factored [5].
each agent in team will try to maximize ateam utility The second property, callettarnability, measures the
function ¢.(z). Team utilities have the advantage over agedependence of a utility on the actions of agents in a particular
utilities in partially observable environments in that a teateam as opposed to all the actions of all the other agents.
utility may be able to incorporate observations from all thintuitively, higher learnability means it is easier for a team
team members. This increase in observational capability willto achieve a large values of its team utility. Note in the
allow team utilities that are more “aligned” with the globafactored example of using' as team utility above, the utility
utility (Figure 1). In addition team utilities allow for domainsof each team depended on the actions of all the agents in all
where agents are not even capable of computing their otgams. Such systems often suffer from low signal-to-noise, a
utility, but can still blindly maximize a broadcast team utilityproblem that get progressively worse as the size of the system
The goal of this section is to create team utility functions tharows.



A. Difference Utility applications, this is a reasonable assumption since the global
utility can often be computed once and broadcast throughout
the environment [7]. More complex forms of broadcasting
DU, =G(z) — G(z—r + ¢7) (1) are often used for distributed multi-agent systems [3], but in

h : Il th bl & db this paper we will assume a very simple global broadcast of
wherez_, contains all the variable not affected by agents 1 qng1e nymber. In many domains it is also reasonable to

teamr. All thelcon:jponﬁn:]s ?f thdat are affecstedhbé/.f?gents Nassume global utility can even be obtained directly from the
teamr are replaced with the fixed constant Such difference o i-onment without broadcasting [10].

utilities are factored no matter what the choicecpf because
the second term does not depend on the actions of ageBtsObservability and Team Size

in team 7 [20]. Furthermore, they usually have far better This paner assumes that the observational capability of a
learnability than does the global utility, because of the secopg, , goes up with the size of the team. This property of team
term of DU, Wh'Ch, removes a lot of the effect of other agent§;e can happen for a number of different reasons including,
(i-e., noise) fromr’s evaluation function. In many situations|,rger teams having more resources and greater coverage of
it is possible to use @, that is equivalent to taking t€amyigerent areas. This paper will use a simple model of how the
7 out of the system. Intuitively this causes the second terghseryation capability of a team relates to its size, based on all
of the difference utility to evaluate the global utility of the;aam observations coming independently from team members.
system without teamr and therefore DU evaluates the teampg; . pe the set of components inthat theith agent in team

. . .y 1
contribution to the global utility. 7 can observe. We define the agent observation [Byals the
B. Partial Observability ratio of the size ofS; to the size ofz:

In general to compute a difference utility, a team may have = [5il ) (6)
to be able to fully observer all the other teams. For some £

specific classes of utility such as the DU, this observationgbte that this value is always in the ranfe0, 1.0]. We as-
demand may be relaxed, since many of the elements of §l@me that all the agents in a team can share their observations,
worldline cancel out and may be ignored. However in manyierefore the set of wordline components that are observable

real world problems, agents from one team cannot obsemyg a teamr, S, is the union of the sets of all of its members:
agents from other teams adequately to compute even the less

demanding utilities. In these cases we must approximate the S = U Si . (1)
utility under the constraints of partial observability. i€T
We denote the component aof that is observable by The percent of agents in other teams that can be observed by
using the vector°~ and the part ofz that is not observable g teamr of sizem is therefore:
by 7 using the vectorz"~. The vectorz°- is the same as
z except that all the elements that are not observable by By =1-(1-B)", (8)
are set to zero. We cali°~ the observable componentof

Considerifference utility functions, which are of the form:

] ) assuming that the set of agents in other teams that each
the worldlmhe. The vector is the sum of these two Vectorsiieam member can observe sampled independently for all team
z = 2% + 2" Itis assumed that team can always observe nemners. Any costs associated with team members sharing
all components ot If the DU depends on any componenixtormation can be included in the global utility. In Section

Py N
of 2" then we cannot compute it directly. Instead there ajg \ye will examine issues in domains where there is a high
several approximations to the DU that vary in their balanggq; of sharing observations within a team.

between learnability and factoredness. In this paper we discuss

four approximations: I1l. THE BAR PROBLEM
BTU,(z) = G(z)—G(z°"" — z,) @) Arthur's bar problem [1] can be viewed as a problem in
. o designing collectives. Loosely speaking, in this problem at
TTU:(2) = G(277) = G(2" — ) (3)  each time step each agent decides whether to attend a bar
BEU,(2) = G(2)—G(z" + E[z"|2"] —2:) (4) by predicting, based on its previous experience, whether the
EEU.(z) = G(2°7 — E[z""|2°7]) — bar will be too crowded to be “rewarding” at that time, as
G(2° + E[z"]27] — z.) (5) quantified by a utility functionG. The selfish nature of the

agents frustrates the global goal of maximizi6y This is
where E[-] is the expectation operator. Note thBIZ'U, as because if most agents think the attendance will be low (and
well as BEU, assume that the true global utility can beherefore choose to attend), the attendance will actually be
broadcast despite having only partial observability. In marhigh, and vice-versa.

Here, we focus on the following more general variant of the
1The first two letters of the utility represent how the two terms of theyar problem investigated in [20]: There aké agents broken

difference utility get their information. “B” stands for “broadcast”, “T’’ stands . L

W into disjoint teams, where each agent goes to the bar one

for “truncated” since the hidden values are just thrown away, and “E” stands ) )
for “estimated.” night each week. The action of the agent is to choose the one



night (out of seven) it will go to the bar that week. At the endll of the trials were conducted for 1000 episodes, and were
of the week, each agent receives the team utility for its teanun 25 times. These tests measured the relative merits of the

The task of the agent is to choose a night that maximizes ftsir team utilities as well as possible benefits of changing
team utility. team sizes. The results show that in some partially observable
More formally, the global utility in any particular week is:domains, changing the utility can increase the performance of

. the system, but that changing the team size without changing

G(z) = ka(z) exp(—ai(2)/c) , 9) the utility may be the best way to increase performance.
k=1

A. Domain without Information Sharing Costs

wherezy,(z) is the total attendance on nightandc is areal-  Figure 2 shows the tradeoffs between choices of team size
valued parameter. In this problem when either too few or tQq gifferent levels of agent observability in a domain where
many agents attend some night in some week the global utiliyere is no costs associated with agents sharing observations
G is low. with other team members. The observational capabilities of
Since we W|Sh to concentrate on the effeCtS Of the Ut|l|t|qﬁe team at each point can be inferred from equation 8.
rather than on the RL algorithms that use them, we useTRese results show that tieEU andTTU team utilities are
(very) simple RL algorithm. In our algorithm each agent ysually worse thanlBTU or EEU. In addition teams using
has a 7-dimensional vector giving its estimates of the teamg/ almost always perform better than teams usBgU .
utility it would receive for choosing each possible night. Thejowever, Figure 3 shows th&EU has difficulties with small
decisions are made using the vector, withecagreedy learner team sizes and low levels of observability. When an agent
with € set to 0.05. All of the vectors are initially set to zerqp 3 team can observe only 10% of agents in other teams,
and there is a learning rate decay is 0.99. The RL algorithmrys is the best utility when each team only has one agent.
can be viewed as a Q-learner with= 0. Note that many Team utility BTU is superior in this low observability case,
other utility maximization algorithms could be used insteadince it uses the broadcast of the global utility to overcome
including evolution over neural networks. the lack of observations. In this case, a system designer using
This paper uses a version of this problem where teamis{/ may consider usind37U instead. However, expanding
cannot fully observe the actions of agents in other teamfie team size while continuing to use t##<U is an even
The number of actions that can be observed is dependenty@iter option. Even when each team only has two agents,
the team size, and is based on collecting the observationsgf combined observational capability of these agents enables
all the members in a team. Let the observation leBelbe the teams to do far better when they use BEU. When
the fraction of agents from other teams that can be observ@dms of three are formed, the system usifU performs
by a single agent. The range @f is [0.0,1.0]. A team is 50 better than the system using the next best UtityU.
able to aggregate all the observations collected by its tegmRe systems using small teams with tB&U even performs
members. This aggregation will make the observation level gfjo4 better than a single team system (team size = 100) with
the teamB. significantly higher than the observation levefy|| observability. This happens because agents have difficulty
of any particular agent, and will rise with the number of thﬁ]ax|m|z|ng a team ut|||ty for a Sing|e team system, since
agents in the team. the utility is influenced by the actions of all of the agents
In the Bar Problem, partial observability influences howy the entire system. In general when teams are too large,
z(z) is computed. For truncated versions of the DBIU  the performance of the system goes down, even whé&i/
and TTU), we usex(z°7) which returns how many of the js used. The best team size is typically around five or ten
observable patrons are going on nighfhote since in BTU the agents. This optimum represents the best balance between
first term is broadcast, the team does not need to compute fidving small teams with more learnable team utilities and large
For utilities using an estimate of the stal@{U and EEU), teams, which collect more observations.
1, (2°) is scaled, andg-x;,(z°7) represents the estimate of \wjth the non-factored utilitiesZ EU andT'TU, this balance
how many agents actually went on nightFor example when of team size comes from the tradeoff between factoredness
B, = 0.25, we assume thaty(2°") is really only accounting and learnability. Even though as team sizes get smaller, they
for one quarter of the agents, so we scale ity = 4. Note hecome more learnable, they also become less factored since
this is an extremely simple estimation procedure and does @t information sharing goes down causing the first term in
take any information an agent collects to modify how it formge difference equation to diverge frofi. For the factored
this estimate. utiliies BEU and BTU, there is a tradeoff between two
different ways noise comes into the system. When teams are
large, more components are removed from the second term
We tested the performance of each of the four version of the difference equation allowing more noise from the first
the DU in Arthur’s Bar Problem. Each team utility was testettrm to remain. When teams are small, the lack of information
with a combination of fourteen different team sizes and elevsharing has a similar effect, in that many of the components
levels of observability for a total of 154 tests per utility. Eacin the second term are not included because their values are
test was conducted with 100 agents and witbqual to five. unknown.

IV. RESULTS



Agent Observability

Fig. 2. Performance with different team sizes and observability. Each graph is for a different utility. From top-left, clockwise the utilities used are: BTU,
TTU, EEU, BEU. The two utilities, BEU and EEU, that estimate hidden values rather than ignoring them, perform much better than their conterparts, BTU

and TTU.
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Fig. 3. Performance of four utility functions at 10% observabillBZU performs best for most team sizes under normal learning time (left).The signal to
noise advantages df EU become more apparent when learning time is reduced to 1/8 of original time (right).

B. Domains with Information Sharing Costs defined as:

. ) ) EEU:(z) = EEU,(z) —m(z)C (10)

The global utility used for previous experiments does not
include any possible communication cost associated with tegfAere @ is the cost for one team member to share its obser-
members sharing their observations with the rest of the teapiions andm(z) returns the number of team members that
This global utility models situations for tightly bound teamsgngose to share. In addition to incorporating the sharing costs
where it is easy to share information in addition to domaingto the utility, a binary action is added to each agent's actions
where an existing team-sharing infrastructure already exis§pace: the choice of whether or not to share observations with
Since there are no team-sharing costs, it is assumed that tgg8Yest of the team. Note that this addition doubles the number
members always share their observations with the rest of theyossible action choices an agent can make and could make it
team. However, in some domains there may be a significafignificantly harder for agents to learn. In addition, this choice
cost to share observations with other team members. TiSaction could make the team utility more variable since it
section will explore whether it is beneficial in such a domaiBhanges continuously as team members decide whether or not
for the agents to be able to choose whether or not to shggeshare.
their observations with the rest of the team. To test the effectiveness of allowing agents to choose

Assuming that teams are using tieFU as their team whether or not to share information, we performed experi-
utility, we can incorporate sharing costs by subtracting ihents where the cost of information sharing was= 2%

100n
off the utility. The EEU including sharing costsEEUC, is  where there aren agents in each group out of a total of



1 other agents. This constant change in effect creates a more
noisy learning environment.
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